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RESUMO

A castanha de caju é um produto de grande relevância econômica para o Brasil, especialmente
no contexto das exportações agrícolas. Em 2024, a produção nacional atingiu 161 mil toneladas,
impulsionada principalmente pelo crescimento no estado do Ceará. A colheita ocorre entre
setembro e abril, exigindo avaliações rápidas e precisas dos lotes, tradicionalmente realizadas de
forma visual e subjetiva. Nesse cenário, a inteligência artificial (IA) surge como alternativa para
aprimorar a avaliação, proporcionando maior eficiência e padronização. Este trabalho propôs o
desenvolvimento de um algoritmo baseado em IA para a classificação e medição de castanhas de
caju, utilizando métodos de visão computacional. O modelo adotado foi o YOLO (You Only Look
Once), devido à sua alta eficiência na detecção em tempo real e à capacidade de aprendizado com
poucos dados. A solução inclui a conversão de medidas de pixel para centímetros, permitindo
estimar o tamanho das castanhas com base em um objeto de referência. O modelo foi treinado
em duas etapas, totalizando 60 épocas, explorando tanto o desenvolvimento from scratch quanto
o uso de transfer learning. Apresentou alta precisão e boa capacidade de generalização, com
alguma confusão entre as classes “avariadas” e “castanha”, atribuída à semelhança entre algumas
instâncias. A detecção da classe “régua” viabiliza a inferência do tamanho das castanhas. No
entanto, a partir do limiar de confiança de 70%, apesar de alcançar precisão superior a 80%, o
recall varia de 0% a 90%, comprometendo a contagem precisa de objetos. Isso limita a aplicação
do modelo em tarefas de quantificação automática.

Palavras-chave: Castanha de caju in natura; Inteligência artificial; YOLO; Avaliação não
invasiva; Aprendizado de máquina.

ABSTRACT

Cashew nuts are of great economic relevance to Brazil, especially in the context of agricultural
exports. In 2024, national production reached 161 thousand tons, driven mainly by growth in
the state of Ceará. The harvest takes place between September and April and requires quick and
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accurate assessments of the batches, traditionally performed visually and subjectively. In this
context, artificial intelligence (AI) emerges as an alternative to improve the evaluation process,
offering greater efficiency and standardization. This work proposed the development of an
AI-based algorithm for the classification and measurement of cashew nuts using computer vision
methods. The selected model was YOLO (You Only Look Once), due to its high efficiency in
real-time detection and its ability to learn from limited data. The solution includes the conversion
of pixel measurements to centimeters, allowing for size estimation of the cashew nuts based
on a reference object. The model was trained in two stages, totaling 60 epochs, exploring both
development from scratch and the use of transfer learning. It demonstrated high accuracy and
good generalization capacity, with some confusion between the “damaged” and “cashew” classes,
attributed to the similarity between some instances. The detection of the “ruler” class enables the
inference of the nut sizes. However, from a confidence threshold of 70%, although the model
achieves over 80% precision, the recall varies from 0% to 90%, compromising accurate object
counting. This limits the model’s applicability for automatic quantification tasks.

Keywords: Cashew nut in natura; Artificial intelligence; YOLO; Non-invasive evaluation; Ma-
chine learning.

1 INTRODUÇÃO

A castanha de caju é um produto de grande importância econômica para o Brasil,
destacando-se principalmente entre as exportações agrícolas do país. A produção de castanha de
caju tem apresentado perspectivas de crescimento. Segundo (Instituto Brasileiro de Geografia
e Estatística (IBGE), 2025), a produção nacional em 2024 alcançou 161 mil toneladas. Esse
incremento deve-se, em grande parte, ao crescimento observado no estado do Ceará — principal
produtor do país —, responsável por aproximadamente 101,9 mil toneladas da produção nacional.
Esse volume representa um aumento de 38,79% em relação ao registrado no ano anterior. De
acordo com (Instituto Brasileiro de Geografia e Estatística (IBGE), 2024), a produção nacional
em 2023 foi de 116 mil toneladas.

No Brasil, o período de colheita e comercialização começa entre os meses de setembro e
outubro e perdura até o mês de abril. A alta sazonalidade da produção, aliada à elevada demanda
internacional, condiciona a indústria a realizar compras em grande volume para formação de
estoque em um curto período de tempo. Esse cenário torna inviável uma avaliação precisa e
detalhada das castanhas (LIMA A. C.; VIDAL NETO, 2022).

O trabalho de (LIMA A. C.; VIDAL NETO, 2022) demonstra que a compra ainda envolve
a participação de um profissional qualificado encarregado de precificar o lote a partir de uma
inspeção de sua matéria-prima. Essa inspeção é predominantemente visual e baseada em critérios
não invasivos, como o tamanho, o formato, a coloração, a integridade física e a ausência de
impurezas. Contudo, esse método é suscetível a limitações, como subjetividade na análise,
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inconsistências nos resultados e maior tempo de execução, especialmente em grandes volumes.
Nesse contexto, os trabalhos de (BANDEIRA et al., 2023) e (BORBA et al., 2022)

abordam como a inteligência artificial (IA) tem sido amplamente aplicada para auxiliar diversos
setores da agricultura em diferentes países. Métodos de IA, como os de deep learning, já são
utilizados na contagem de frutos e na detecção de doenças. A capacidade da IA de processar
grandes volumes de dados com rapidez e precisão abre possibilidades para reduzir a subjetividade
da análise visual dos lotes de castanhas, tornando o processo mais ágil e confiável.

Este trabalho propõe o desenvolvimento de um algoritmo de classificação de castanhas de
caju, baseado em um modelo de inteligência artificial, capaz de detectar, reconhecer e mensurar
o tamanho das castanhas, utilizando como referência um objeto de tamanho conhecido presente
na imagem; neste caso, utiliza-se uma régua. A solução poderá ser empregada como ferramenta
para auxiliar profissionais na avaliação visual não invasiva, contribuindo para critérios mais
precisos e objetivos. Para isso, será necessário escolher um modelo eficiente para detecção e
classificação em vídeos e fotos, criar um banco de dados com imagens de castanhas e réguas e,
por fim, treinar e avaliar o modelo.

A estrutura do artigo está organizada de forma a abordar os tópicos principais em seções
distintas. A Seção 2 apresenta uma revisão teórica concisa, explicando conceitos fundamentais
de inteligência artificial e suas conexões com o projeto desenvolvido. Na Seção 3, são discutidos
trabalhos relacionados, analisando estudos prévios realizados por outros autores sobre temas
semelhantes. A Seção 4 detalha a metodologia empregada para implementar a proposta apre-
sentada. Na Seção 5, são apresentados os resultados obtidos após o treinamento da rede neural
convolucional. Por fim, a Seção 6 conclui o trabalho com uma síntese dos principais achados e
indica direções para pesquisas futuras.

2 REFERENCIAL TEÓRICO

Para melhor compreensão sobre o tema abordado, esta seção apresenta conceitos sobre
Inteligência Artificial (IA), Aprendizado de Máquina, Redes Neurais Artificiais, Deep Learning,
e Convolutional Neural Networks (CNN), ferramentas utilizadas no sistema.

2.1 Inteligência Artificial

Como demonstrado por Russell e Norvig (2021), o conceito de Inteligência Artificial
evoluiu ao longo da história, seguindo diferentes abordagens e refletindo distintas compreensões
científicas sobre inteligência. Enquanto alguns pesquisadores a definem pela capacidade de
reproduzir o desempenho humano, outros adotam uma visão mais abstrata e formal, baseada na
racionalidade.

O trabalho de (GOMES, 2023) aborda o Teste de Turing, proposto por Alan Turing em
1950. O teste possui três participantes: dois humanos — um interrogador e outro que responderá
às perguntas — e uma máquina, que também será interrogada. O interrogador não sabe quem
está respondendo às perguntas e, em sua segunda versão, não sabe sequer que há uma máquina
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entre os participantes. Para passar no teste, a máquina deve enganar o interrogador humano,
fazendo-se passar por uma pessoa. Gomes conclui que, ao passar no teste, a máquina demonstra
ser capaz de simular ou imitar aspectos do comportamento humano que requerem inteligência.

Além disso, Russell e Norvig (2021) citam Bellman, que define a Inteligência Artificial
como o campo dedicado ao estudo e criação de agentes capazes de operar autonomamente,
adaptar-se, compreender o ambiente e buscar o melhor resultado para atingir um objetivo.
Esse paradigma, predominante na área, constitui o modelo padrão. Assim, a IA possibilita que
máquinas realizem operações complexas, como reconhecer padrões e resolver problemas sem
soluções predefinidas, tomando sempre a melhor decisão com base nos dados disponíveis.

2.2 Aprendizado de Máquina

Russell e Norvig (2021) explicam que o aprendizado é a capacidade de um agente extrair
uma regra geral a partir de observações feitas no ambiente em que está inserido. No contexto do
aprendizado de máquina, esse agente é um computador que, ao analisar dados, gera uma regra,
constrói um modelo com base nela e usa esse modelo para resolver problemas.

Embora o computador — considerado o agente no contexto do aprendizado de máquina
— possa receber como entrada qualquer tipo de estrutura de dados, os problemas de aprendizado
podem ser divididos em dois tipos principais: classificação, quando a saída pertence a um
conjunto finito de valores, e regressão, quando a saída é um número, representado por um valor
inteiro ou real. Além disso, existem diferentes tipos de feedback que podem acompanhar as
entradas, os quais determinam os principais tipos de aprendizado (RUSSELL; NORVIG, 2021).

No aprendizado supervisionado, o agente recebe um conjunto de entradas, cada uma
associada a um rótulo de saída, permitindo que desenvolva uma função para o problema (ALZU-
BAIDI et al., 2021). No aprendizado não supervisionado, o agente identifica padrões nos dados
de entrada e realiza a tarefa sem depender de feedback explícito (FLECK; BENEDET; SILVA,
2016). A técnica mais comum, segundo Russell e Norvig (2021), é o clustering, que organiza os
dados em grupos com características semelhantes.

O aprendizado por reforço ocorre quando o agente aprende por meio de reforços, rece-
bendo recompensas ao atingir seus objetivos e punições ao cometer erros (OPENAI et al., 2019).
Conforme descrito por Russell e Norvig (2021), o agente deve identificar quais ações realizadas
levaram ao resultado final e ajustar seu comportamento para maximizar as recompensas futuras.
Por fim, o aprendizado por transferência permite que o agente utilize o conhecimento de uma
tarefa anterior para aprender uma nova de maneira mais eficiente, especialmente quando ambas
são relacionadas, exigindo menos exemplos para a adaptação Russell e Norvig (2021).

2.2.1 Redes Neurais Artificiais

De forma geral, uma rede neural artificial é um sistema projetado para imitar um cérebro
humano, desde sua forma até a maneira como realiza determinadas tarefas e sua topologia, que é
uma clara analogia a uma rede neural natural. Esse tipo de rede é capaz de aprender por meio
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da interação com o ambiente em que está inserida, adquirindo conhecimento progressivamente.
A adaptação da rede ao problema ocorre por meio das conexões entre os neurônios, que são
alteradas em decorrência da aprendizagem (FLECK; BENEDET; SILVA, 2016).

Em 1958, Frank Rosenblatt desenvolveu a rede Perceptron, cuja topologia simples é
composta por três camadas. A primeira camada recebe as entradas, que são transmitidas para
a segunda camada por meio de sinapses com pesos ajustáveis, onde um neurônio processa
essas informações. Por fim, o neurônio gera uma saída que corresponde à terceira camada. Sua
topologia simples a limitava à resolução de problemas linearmente separáveis (GOUVEIA, 2012).
A topologia da rede é representada na Figura 1. Gouveia (2012) demonstra que, posteriormente,
a fim de resolver problemas mais complexos, foi desenvolvida a Perceptron de Multicamadas
(MLP), que, graças à presença de uma ou mais camadas ocultas, é capaz de resolver problemas
não linearmente separáveis. Sua topologia, mais avançada em comparação ao Perceptron, é
composta por uma camada de entrada, uma ou mais camadas ocultas e uma camada de saída. A
Figura 2 ilustra essa topologia.

Embora a topologia de cada rede possa variar bastante, podemos classificar três clas-
ses de arquiteturas de rede fundamentalmente diferentes: redes alimentadas para frente com
camada única, redes alimentadas para frente com múltiplas camadas e redes recorrentes. Essas
arquiteturas normalmente são compostas por alguns componentes essenciais:

• Neurônio: Unidade de processamento da rede responsável por processar as entradas em
conjunto com os pesos das sinapses e os valores de bias, gerando uma saída que pode ser
utilizada como entrada para outro neurônio ou como o resultado final da rede (FLECK;
BENEDET; SILVA, 2016).

• Conjunto de sinapses: São as conexões entre os neurônios de uma rede. Elas transformam
a saída de um neurônio na entrada do seguinte. Cada uma dessas conexões possui um peso,
que ajusta a influência que a saída do neurônio anterior terá no próximo neurônio. Esse
peso é um valor numérico que multiplica a saída recebida, determinando o quanto aquela
informação é relevante para o processamento subsequente (HOSAKI; RIBEIRO, 2021).

• Função de ativação: Por lidar com problemas complexos, as redes neurais podem gerar
valores de saída muito discrepantes ao processar as entradas ao longo de sua topologia. Para
mitigar esse problema, utiliza-se a função de ativação, que tem como objetivo restringir a
amplitude dos valores gerados pelos neurônios (HOSAKI; RIBEIRO, 2021).

• Bias: Valor aplicado externamente a cada neurônio e que tem o efeito de aumentar ou
diminuir a entrada líquida da função de ativação (FLECK; BENEDET; SILVA, 2016).

Segundo Fleck et al. (2016) o aprendizado da rede MLP (Perceptron Multicamadas)
envolve o processo de ajuste dos pesos das sinapses, conhecido como backpropagation. Esse
processo ocorre durante o treinamento em duas etapas: propagação e retropropagação. Na
primeira etapa, um conjunto de entradas é propagado pela rede, camada por camada, até produzir
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Figura 1 – Exemplo de arquitetura de uma rede Perceptron

Fonte: Elaborado pelo autor (2025)

Figura 2 – Exemplo de arquitetura de uma MLP totalmente conectada

Fonte: Elaborado pelo autor (2025)

um conjunto de saídas ao final. Na segunda etapa, todos os pesos sinápticos são ajustados com
base em uma regra de correção de erro. O erro é retropropagado pela rede, da camada de saída
em direção à camada de entrada, permitindo o ajuste dos pesos sinápticos. Esse ajuste melhora a
capacidade da rede de se adequar à tarefa, gerando uma saída mais próxima da resposta desejada.

2.3 Deep Learning

Deep learning trata-se de um conjunto de técnicas de Machine Learning que utilizam
redes neurais artificiais profundas, com muitas camadas ocultas entre a camada de entrada e a de
saída.

De acordo com Hosaki e Ribeiro (2021), modelos clássicos de machine learning são
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limitados por sua capacidade de extração de características, o que restringe a quantidade de
dados que podem processar. Em contraste, o deep learning, devido à sua topologia complexa,
consegue lidar com grandes volumes de dados sem enfrentar essa limitação. No entanto, essa
abordagem exige um alto poder computacional para ser aplicada de forma eficaz.

Segundo Pichler e Hartig (2023), apesar de esses modelos compartilharem princípios e
conceitos fundamentais com outros algoritmos de machine learning, eles são frequentemente
considerados um campo distinto devido às suas características específicas e arquiteturas especia-
lizadas. Modelos de deep learning, como as Convolutional Neural Networks (CNNs), apresentam
estruturas que diferem significativamente dos modelos tradicionais de aprendizado de máquina,
sendo projetados para atender a desafios específicos de forma mais eficiente.

2.4 Convolutional Neural Networks

Segundo Hosaki e Ribeiro (2021), as Convolutional Neural Networks (CNNs) são a forma
de deep learning mais utilizada para tarefas de visão computacional. A principal aplicação das
CNNs está no processamento de informações visuais, como imagens e vídeos, pois a operação
de convolução permite analisar dados preservando sua estrutura bidimensional.

O trabalho de (ALZUBAIDI et al., 2021) demonstra que a arquitetura da CNN é composta
por três tipos de camadas, cada uma com uma função específica. Embora o número de camadas
possa variar, elas são geralmente classificadas em três tipos:

• Camada de Convolução: A camada convolucional possui um kernel, que é uma matriz de
pesos. Cada neurônio é responsável por processar esse kernel em uma região específica
da imagem, denominada campo receptivo local. Nesse processo, os valores do campo
receptivo local são multiplicados pelos pesos correspondentes do kernel e, em seguida,
somados para formar um único valor escalar. A saída da camada é o conjunto das saídas
de todos os neurônios, resultando em uma matriz bidimensional denominada mapa de
características. O processo de convolução é demonstrado na Figura 3.

• Camada de Pooling: A camada de pooling é responsável por reduzir a dimensão do mapa
de características, preservando o maior número possível de informações extraídas pelas
camadas convolucionais. Ela funciona de maneira semelhante à camada de convolução,
substituindo uma região do mapa de características por um único valor, geralmente utili-
zando operações como max pooling (que seleciona o maior valor da região) ou average

pooling (que calcula a média dos valores).

• Camada Totalmente Conectada: É utilizada como o classificador da CNN. Ela segue
o método básico da rede neural perceptron de múltiplas camadas convencional. A sua
entrada vem da camada anterior de pooling ou convolucional. Esta entrada está na forma
de um vetor, que é criado a partir dos mapas de características após o achatamento. A saída
da última camada representa a saída final da CNN.
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Figura 3 – Exemplo de convolução

Fonte: Elaborado pelo autor (2025)

2.5 Yolo

Diante das particularidades deste trabalho, optou-se pelo uso do algoritmo YOLO devido
à sua eficiência na detecção em tempo real. Além disso, sua oitava versão integra máscaras de
segmentação, proporcionando maior precisão nas caixas delimitadoras. A altura e a largura das
caixas serão convertidas de pixels para centímetros, permitindo assim mensurar o tamanho das
castanhas.

Criado por Joseph Redmon em 2015, o YOLO, já em sua primeira versão, demonstrava a
capacidade de detectar objetos com apenas uma passagem da imagem pela rede convolucional, o
que originou seu nome: YOLO (You Only Look Once). Sua pipeline simplificada permite uma
detecção rápida sem comprometer a precisão, e sua execução de 45 quadros por segundo torna
possível realizar detecções em tempo real com o dobro da média de precisão em relação aos
modelos concorrentes. Esse desempenho foi alcançado graças à sua abordagem inovadora, que
trata a detecção de objetos como um problema de regressão, convertendo diretamente os pixels
da imagem em coordenadas das caixas delimitadoras.

Além disso, o YOLO utiliza o contexto global da imagem para identificar objetos,
diferenciando-se de métodos que empregam um contexto regional, como o R-CNN (Region-

based Convolutional Neural Networks) ou o Faster R-CNN, que utilizam o método de janela
deslizante. Graças a isso, o YOLO comete menos da metade dos erros de fundo em comparação
ao Fast R-CNN (REDMON et al., 2015).

Na sua oitava versão, o YOLOv81 conta com uma abordagem sem âncoras, o que
contribui para uma melhor precisão e um processo de detecção mais eficiente. Sua arquitetura
de backbone e neck é de última geração e oferece uma compensação otimizada entre precisão e
velocidade, tornando-o ideal para diversas aplicações (ULTRALYTICS, 2024). De acordo com
(ZOU et al., 2023) o backbone é responsável pela extração de características, gerando o mapa de
características, enquanto o neck atua como um funil, reduzindo e refinando esse mapa.
1 https://github.com/ultralytics/ultralytics
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3 TRABALHOS RELACIONADOS

Na agricultura, a inteligência artificial tem sido utilizada como facilitadora em diversos
setores, conforme demonstrado nos trabalhos de (Sá et al., 2023), (LIN et al., 2024) e (WEN et
al., 2022).

O trabalho de (Sá et al., 2023) aborda o contexto da pós-colheita e do beneficiamento
de frutos, destacando que a identificação e a rastreabilidade são fundamentais para garantir a
qualidade do produto e reduzir perdas. Métodos convencionais de monitoramento dependem
fortemente da inspeção humana, o que pode resultar em inconsistências e ineficiências. Nesse
cenário, técnicas de deep learning têm sido aplicadas para otimizar o controle de produção.

O estudo implementa um sistema de monitoramento automatizado utilizando o YOLOv8,
capaz de processar imagens em tempo real, identificar e classificar contentores de frutos, com o
objetivo de reduzir erros humanos, aumentar a rastreabilidade e melhorar a eficiência operacional
no setor agrícola. A triagem manual é suscetível a erros, variações subjetivas e limitações
operacionais.

O modelo foi treinado com um banco de dados contendo imagens de contentores de frutos
em diferentes cenários, incluindo variações de iluminação e obstruções parciais. As métricas de
avaliação utilizadas foram precisão, recall e média de precisão. Além disso, o sistema foi testado
em ambientes simulados para verificar sua viabilidade em condições reais de operação.

Os resultados obtidos indicam que o modelo é altamente eficiente para a detecção de
contentores de frutos, mesmo em condições desafiadoras. O modelo apresentou altos índices de
precisão e demonstrou ser uma solução viável para aplicação na indústria agrícola.

Por sua vez, o trabalho de (LIN et al., 2024) propõe a detecção automática de frutas
cítricas em ambientes naturais, que apresentam desafios significativos devido à oclusão causada
por folhas, galhos e sobreposição entre os frutos. O estudo desenvolve o AG-YOLO, um algoritmo
de detecção rápida de frutas cítricas que incorpora fusão de contexto global para melhorar a
precisão em cenários complexos.

O AG-YOLO mescla o contexto global com o local utilizando a arquitetura NextViT como
backbone, permitindo a extração de características globais das imagens. Além disso, incorpora
o Módulo de Fusão de Contexto Global (GCFM), que facilita a interação entre características
locais e globais por meio de mecanismos de autoatenção. Essa abordagem demonstrou melhorias
significativas na detecção de frutas cítricas, especialmente em condições de oclusão severa.

A detecção automática de pragas agrícolas em ambientes naturais é um desafio significa-
tivo, especialmente devido à alta densidade e ao tamanho reduzido dos insetos. Nesse contexto,
(WEN et al., 2022) propuseram o Pest-YOLO, um modelo de detecção voltado para múltiplas
classes de pragas densas e pequenas, visando melhorar a precisão em cenários complexos.

O Pest-YOLO incorpora a função de perda focal (focal loss) para lidar com o desequilíbrio
entre classes e melhorar a atenção a amostras difíceis. Essa abordagem permite que o modelo
foque em exemplos mais desafiadores durante o treinamento, resultando em melhor desempenho
na detecção de pragas pequenas e densamente distribuídas.
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Além disso, o modelo foi avaliado em um conjunto de dados abrangente, demonstrando
sua eficácia na detecção e contagem de pragas em larga escala. Os resultados indicaram melhorias
significativas em relação a modelos anteriores, destacando o potencial do Pest-YOLO para
aplicações práticas na agricultura de precisão.

4 METODOLOGIA

Este trabalho adota uma abordagem metodológica aplicada e experimental. A abordagem
experimental se dá por meio dos testes do modelo YOLO na detecção de castanhas in natura,
enquanto a abordagem aplicada consiste na utilização do modelo testado como ferramenta
auxiliar na avaliação não invasiva.

O processo metodológico se inicia com a coleta e anotação das imagens das castanhas de
caju, conforme descrito na Seção 4.1. Em seguida, foi realizada a escolha e o desenvolvimento
do modelo utilizando a arquitetura YOLOv8, que foi treinado, conforme descrito na Seção 4.2,
posteriormente testado na Seção 4.3 e avaliado na Seção 5.

4.1 Dataset

O conjunto de dados utilizado neste trabalho é composto por 681 imagens contendo
castanhas e réguas, organizadas em quatro classes: “castanha” (inteiras, sem comprometimento e
maduras), “avariada” (com a presença de furos), “maturi” (imaturas) e “régua”, com um total de
742, 348, 467 e 211 objetos anotados, respectivamente.

Com o intuito de garantir maior diversidade e representatividade das castanhas, as
imagens foram capturadas a diferentes distâncias — até 60 cm de altura —, sob variadas
condições de iluminação e qualidade de imagem. Além disso, foram utilizados múltiplos ângulos
de captura, com diferentes quantidades de castanhas por imagem, a fim de ampliar a complexidade
do acervo.

As 164 imagens correspondentes à classe Régua foram extraídas do projeto Ruler Com-
puter Vision Project, disponível na plataforma Roboflow Universe. As imagens foram reanotadas
com a finalidade de se adequar aos padrões do novo conjunto de dados. A anotação original
utiliza bounding box, onde o objeto se encontra no centro dela. Já na adaptação, a régua é
contornada, conforme ilustrado na Figura 4. As réguas presentes variam quanto à cor, tamanho,
formato e número por imagem. Exemplos visuais das quatro classes estão apresentados na Figura
5.

Para aumentar o conjunto de dados, foram aplicadas técnicas de data augmentation,
como espelhamento horizontal, rotação de 90° no sentido horário, rotação de 90° no sentido
anti-horário e rotações aleatórias entre -12° e +12°. Com essas técnicas, o número de imagens
no dataset foi ampliado de 691 para 1286 e as classes de 348 para 513 , 742 para 1513 , 467
para 734. As classes passaram de 28 para 70, 186 para 409 e 85 para 182. Do total, 76% das
imagens foram destinadas ao treinamento e 24% à validação.
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Figura 4 – Exemplo de adaptação da anotação

Fonte: Elaborado pelo autor (2025)

Figura 5 – Exemplos das classes Castanha, Maturi, Avariada e Regua anotadas no Roboflow

Fonte: Elaborado pelo autor (2025)

4.2 Treinamento

O modelo foi treinado ao longo de 60 épocas, utilizando a técnica de transfer learning, na
qual os melhores pesos obtidos na primeira etapa de treinamento foram reaproveitados na segunda.
No YOLO, esses pesos são selecionados com base nas métricas mAP@0.5 e mAP@0.5:0.95.
Essa abordagem foi adotada em virtude das limitações da versão gratuita do Google Colab, que
não permite treinamentos contínuos com duração superior a 40 épocas. Assim, o processo foi
dividido em duas etapas: a primeira com 25 épocas e a segunda com 35.

O treinamento foi realizado por meio de aprendizado supervisionado, com possibilidade
de ativação do mecanismo de early stopping, que interrompe automaticamente o processo caso o
desempenho no conjunto de validação deixe de apresentar melhorias. Esse recurso é essencial
para evitar o overfitting.

Na primeira etapa, o modelo foi treinado com a versão inicial do conjunto de dados ao
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longo de 25 épocas. O objetivo principal dessa fase foi possibilitar que a rede neural aprendesse
características fundamentais, respeitando as limitações de tempo de execução impostas pela
plataforma utilizada. Na segunda etapa, os melhores pesos da fase anterior foram carregados
e utilizados em um novo treinamento, agora com duração de 35 épocas. Essa fase teve como
finalidade a potencial ativação do early stopping e o refinamento do aprendizado do modelo.

4.3 Testes

O modelo foi avaliado utilizando aproximadamente 309 imagens do conjunto de vali-
dação, além de algumas imagens inéditas que não haviam sido vistas pelo modelo durante o
treinamento. A Figura 6 apresenta exemplos de detecções realizadas pelo modelo. A classe
“castanha” obteve predições com mais de 80% de confiança; a classe “maturi” alcançou 93%; e a
classe “avariada” obteve valores de 93% e 96%. Esses resultados demonstram a capacidade do
modelo em rotular corretamente as imagens, mesmo diante de variações visuais e classes com
características distintas.

Figura 6 – Exemplo de imagens rotuladas pelo modelo

Fonte: Elaborado pelo autor (2025)

4.4 Métricas de avaliação

As métricas de avaliação utilizadas neste trabalho são a precisão, o recall, o mean average

precision (mAP) e a matriz de confusão. De acordo com (PADILLA et al., 2021), a precisão é
definida como a proporção de instâncias classificadas positivamente que são, de fato, corretas,
indicando a capacidade do modelo de selecionar apenas objetos relevantes. Por sua vez, o recall

corresponde à proporção de instâncias relevantes que foram corretamente identificadas, refletindo
a capacidade do modelo de localizar todas as ocorrências pertinentes.

Para o cálculo da precisão e do recall, cada caixa delimitadora prevista deve ser classifi-
cada em uma das três categorias: Verdadeiros Positivos (VP), Falsos Positivos (FP) ou Falsos
Negativos (FN). Os verdadeiros positivos correspondem às detecções corretas de objetos exis-
tentes. Já os falsos positivos representam detecções incorretas, seja pela identificação de um
objeto inexistente ou pela localização imprecisa de um objeto real. Por fim, os falsos negativos
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ocorrem quando uma caixa delimitadora da verdade de base não é detectada pelo modelo. Essas
classificações são essenciais para a avaliação precisa do desempenho dos detectores de objetos.
As Equações 1 e 2 representam os cálculos de precisão e recall, respectivamente:

Precisão =
V P

V P+FP
(1)

Recall =
V P

V P+FN
(2)

O mean Average Precision (mAP) corresponde à média da área sob a curva de precisão

em função do recall para todas as classes, representando o quão preciso é o modelo à medida que
realiza um número crescente de detecções. Existem duas versões mais utilizadas dessa métrica:
o mAP@0.5 e o mAP@0.5:0.95. A primeira considera uma predição correta quando o valor de
IoU (Intersection over Union) é igual ou superior a 0,5, enquanto a segunda aplica critérios mais
rigorosos, calculando a média do AP para valores de IoU variando de 0,5 a 0,95, com intervalos
de 0,05 (PADILLA et al., 2021).

O IoU é uma medida que avalia o grau de sobreposição entre a caixa delimitadora predita
e a caixa real, sendo calculado pela razão entre a área da interseção e a área da união dessas duas
caixas. Seu valor varia de 0 a 1, sendo 1 representativo de uma correspondência perfeita entre a
predição e a anotação real (PADILLA et al., 2021).

Por fim, a matriz de confusão, conforme descrito por (AMARAL, 2023), serve para
verificar a qualidade do modelo na classificação. Sua estrutura é composta por linhas e colunas:
neste trabalho, as linhas representam as classes preditas pelo modelo, enquanto as colunas
correspondem às classes reais. Trata-se de uma ferramenta interpretativa, na qual qualquer
previsão fora da diagonal principal é considerada incorreta.

5 AVALIAÇÃO DOS RESULTADOS

As Figuras 7 e 8 ilustram o desempenho do modelo ao longo do processo de treinamento
e validação, realizados em 25 e 35 épocas, respectivamente. Os gráficos estão organizados em
duas linhas: a linha superior refere-se aos dados de treinamento, enquanto a inferior representa
os dados de validação.

Observa-se que as curvas de perda (loss) apresentam uma tendência de queda à medida
que o treinamento avança, enquanto as métricas de desempenho demonstram picos cada vez
mais altos. Esses resultados indicam que o modelo possui boa capacidade de aprendizado, com
redução consistente da função de perda e melhoria progressiva das métricas, tanto nos dados de
treinamento quanto nos de validação. Isso sugere que o modelo está conseguindo generalizar
adequadamente, sem sinais aparentes de overfitting.

Além disso, os gráficos identificados como metrics/mAP50(B) e metrics/mAP50-95(B)

referem-se, respectivamente, às métricas mAP@0.5 e mAP@0.5:0.95. Nota-se que ambas apre-
sentam evolução acentuada nas primeiras iterações, atingindo valores superiores a 0,90 no gráfico
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metrics/mAP50(B) e acima de 0,80 nas últimas épocas no gráfico metrics/mAP50-95(B). Esses
resultados indicam que o modelo tornou-se altamente eficaz na detecção de objetos, mesmo
sob critérios mais rigorosos de sobreposição (IoU), especialmente durante a segunda etapa do
treinamento, na qual os picos das curvas atingem seus valores mais elevados.

Figura 7 – Gráficos de Insights do Treinamento do Modelo na primeira etapa

Fonte: Elaborado pelo autor (2025)

Figura 8 – Gráficos de Insights do Treinamento do Modelo na segunda etapa

Fonte: Elaborado pelo autor (2025)

As Figuras 9 e 10 apresentam a matriz de confusão do modelo de classificação para as
classes “avariada”, “castanha”, “maturi”, “régua” e “background”. Na classe “avariada”, ambas
as matrizes mostram um número semelhante de falsos positivos (FP), principalmente confundidos
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com a classe “castanha”. Apesar disso, a matriz da segunda etapa apresenta um maior número de
verdadeiros positivos (VP). Para a classe “castanha”, também há uma boa quantidade de VP em
ambas as matrizes, com um aumento na segunda etapa.

A classe “maturi” apresentou o melhor desempenho, com 242 verdadeiros positivos (VP).
Em contraste, a classe “régua” obteve apenas 32 VP e registrou 16 falsos positivos (FP), que
foram majoritariamente confundidos com a classe “background”. Esta última representa os casos
em que o modelo não detecta ou não classifica nenhum objeto relevante.

Nas duas matrizes de confusão analisadas, observa-se que o modelo falha na detecção de
algumas classes, resultando em FN. Essas falhas provavelmente estão relacionadas ao desbalance-
amento do conjunto de dados, no qual a classe “castanha” possui um número significativamente
maior de instâncias em comparação às demais. Além disso, a semelhança visual entre as clas-
ses “castanha” e “avariada” pode dificultar a predição da classe com menor representatividade,
contribuindo para os erros de classificação.

De modo geral, o modelo apresentou maior dificuldade na distinção entre as classes
“avariada”, “castanha” e “background”, enquanto “maturi” demonstrou alta precisão, e os erros
relacionados à “régua” concentraram-se na confusão com o “background”.

Figura 9 – Matriz de Confusão do Modelo na primeira etapa

Fonte: Elaborado pelo autor (2025)

As Figuras 11 e 12 apresentam a Curva de Precisão-Confiança (Precision-Confidence

Curve), correspondentes à primeira e à segunda etapa de treinamento, respectivamente. Essa
curva é utilizada para avaliar o desempenho de um modelo de detecção de objetos com base no
nível de confiança atribuído às previsões. O gráfico permite visualizar a relação entre a confiança
nas predições realizadas pelo modelo e sua precisão, fornecendo subsídios importantes para a
definição de um limiar de confiança ideal, com o objetivo de otimizar o desempenho.

No gráfico, o eixo horizontal representa o valor de confiança (Confidence) associado
às predições do modelo, variando de 0 a 1. O eixo vertical indica a precisão (Precision), que
corresponde à proporção de predições corretas entre todas as predições positivas realizadas.
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Figura 10 – Matriz de Confusão do Modelo na segunda etapa

Fonte: Elaborado pelo autor (2025)

As curvas individuais referem-se às seguintes classes: “avariada” apresenta uma precisão
mais instável, especialmente em altos níveis de confiança, indicando maior variação nos resulta-
dos; “castanha” e “régua” demonstram um comportamento crescente e mais consistente, com
maior precisão a partir de níveis intermediários de confiança; “maturi” se destaca pelo desempe-
nho superior, mantendo alta precisão mesmo em baixos níveis de confiança, com estabilidade ao
longo de toda a curva.

Na prática, esse tipo de gráfico é essencial para determinar um limiar de confiança ideal
para a filtragem das detecções. Quanto maior for o valor de confiança exigido para aceitar uma
predição, maior será a precisão; no entanto, isso pode acarretar uma redução no recall. Assim,
identificar o ponto em que o modelo alcança alta precisão sem eliminar muitas detecções válidas
é fundamental para obter um bom equilíbrio entre desempenho e abrangência.

Figura 11 – Curva de Precisão-Confiança do Modelo na primeira etapa

Fonte: Elaborado pelo autor (2025)
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Figura 12 – Curva de Precisão-Confiança do Modelo na segunda etapa

Fonte: Elaborado pelo autor (2025)

As Figuras 13 e 14 exibem a Curva Recall-Confiança, que relaciona o nível de confiança
atribuído às predições do modelo com o valor de revocação (recall) obtido.

O eixo das abscissas representa os diferentes níveis de confiança definidos no processo
de inferência, enquanto o eixo das ordenadas mostra os valores correspondentes de recall. O
gráfico permite observar o comportamento do modelo por classe, bem como sua média global.

Ao analisar as curvas, observa-se que as classes “maturi”, “castanha” e “régua” alcançam
valores elevados de recall em praticamente todos os níveis de confiança, evidenciando que o
modelo possui boa capacidade de detecção para essas categorias.

Por outro lado, a classe “avariada” apresenta desempenho consideravelmente inferior,
com o recall diminuindo progressivamente à medida que se eleva o nível de confiança exigido.
Esse comportamento sugere um maior número de falsos negativos nessa classe, indicando que o
modelo tem mais dificuldade em identificar corretamente os objetos desse tipo quando se aplica
um filtro mais rigoroso.

A curva média mostra que o modelo atinge sua maior taxa de recuperação de objetos
positivos em níveis mais baixos de confiança.

A Figura 15 apresenta o resultado da classificação das castanhas e da detecção da régua
pelo modelo. O cálculo do tamanho das castanhas, em centímetros, é realizado em duas etapas.

Na primeira etapa, com base no tamanho real da régua (TR), previamente fornecido ao
sistema, é feita a conversão das dimensões da imagem de pixels para centímetros. Para isso,
utiliza-se o maior lado da bounding box da régua (LM), aplicando-se a seguinte razão:

Fator de conversão =
LM
T R

(3)

Na segunda etapa, o maior lado da bounding box de cada castanha é dividido pelo fator
de conversão obtido na Equação 3. Dessa forma, o sistema estima o tamanho das castanhas em
centímetros e gera uma tabela em formato PDF, contendo a quantidade de castanhas detectadas,
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Figura 13 – Curva de Recall-Confiaça do Modelo na primeira etapa

Fonte: Elaborado pelo autor (2025)

Figura 14 – Curva de Recall-Confiaça do Modelo na segunda etapa

Fonte: Elaborado pelo autor (2025)

organizadas por classe e faixa de tamanho, conforme ilustrado na Figura 16. Os tamanhos seguem
os critérios apresentados no trabalho de (LIMA A. C.; VIDAL NETO, 2022), que define as
categorias da seguinte forma:

• Grande – Retida na peneira de 23 mm (90 frutos por quilo);

• Média – Passa na peneira de 23 mm e é retida na de 21 mm (91 a 140 frutos por quilo);

• Pequena – Passa na peneira de 21 mm e é retida na de 19 mm (141 a 220 frutos por quilo);

• Miúda – Passa na peneira de 19 mm e é retida na de 15 mm (221 a 300 frutos por quilo);

• Cajuí – Passa na peneira de 15 mm (acima de 300 frutos por quilo).
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Figura 15 – Demonstração da inferência de tamanho das castanhas

Fonte: Elaborado pelo autor (2025)

Figura 16 – Exemplo da tabela

Fonte: Elaborado pelo autor (2025)

6 CONCLUSÃO

Em síntese, este trabalho apresentou uma abordagem abrangente para a construção de
um dataset específico de castanhas de caju e o treinamento de um modelo de detecção de
castanha de caju, explorando tanto o desenvolvimento from scratch quanto o uso de transfer

learning. O processo de treinamento foi dividido em duas etapas, totalizando 60 épocas (25 e 35,
respectivamente).

O modelo desenvolvido apresenta alta precisão e boa capacidade de generalização. Apesar
de demonstrar alguma confusão entre as classes “avariadas” e “castanha”, em que 12,82% das
predições da classe “avariada” feitas pelo modelo na segunda etapa são da classe “castanha”,
essa confusão ocorre possivelmente pela semelhança entre algumas instâncias dessas classes.
Ainda assim, o modelo é capaz de distinguir adequadamente as demais classes. Além disso, a
detecção da classe “régua” permite a inferência do tamanho das castanhas.

Entretanto, a partir do limiar de confiança de 70%, em que o modelo alcança precisões
superiores a 80%, observa-se um recall que varia de 0% a 90%, o que afeta diretamente a
quantidade de detecções reais que deixam de ser realizadas. Isso o torna inviável para a tarefa de
contagem, uma vez que suas detecções não correspondem fielmente à quantidade real de objetos
presentes.

Dessa forma, este estudo demonstra sua viabilidade prática na identificação e classificação
de castanhas de caju in natura, oferecendo benefícios significativos para a cadeia produtiva.

Como perspectivas para trabalhos futuros, destaca-se o aprimoramento do dataset inicial,
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com foco no aumento da quantidade de imagens contendo múltiplas instâncias de objetos,
visando elevar o recall em níveis mais altos de confiança, mantendo uma boa precisão mesmo
em limiares mais baixos. Busca-se, assim, atingir valores superiores a 98% de recall sem
comprometer a precisão. Outras melhorias relevantes incluem o balanceamento da quantidade de
instâncias por classe, a fim de mitigar problemas de confusão, além da ampliação das categorias
de classificação.
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